A curated collection of Klebsiella metabolic models reveals variable substrate usage and gene essentiality

Author:

Hawkey JaneORCID,Vezina BenORCID,Monk Jonathan M.ORCID,Judd Louise M.ORCID,Harshegyi Taylor,López-Fernández SebastiánORCID,Rodrigues Carla,Brisse SylvainORCID,Holt Kathryn E.ORCID,Wyres Kelly L.ORCID

Abstract

AbstractThe Klebsiella pneumoniae species complex (KpSC) is a set of seven Klebsiella taxa which are found in a variety of niches, and are an important cause of opportunistic healthcare-associated infections in humans. Due to increasing rates of multi-drug resistance within the KpSC, there is a growing interest in better understanding the biology and metabolism of these organisms to inform novel control strategies. We collated 37 sequenced KpSC isolates isolated from a variety of niches, representing all seven taxa. We generated strain-specific genome scale metabolic models (GEMs) for all 37 isolates and simulated growth phenotypes on 511 distinct carbon, nitrogen, sulphur and phosphorus substrates. Models were curated and their accuracy assessed using matched phenotypic growth data for 94 substrates (median accuracy of 96%). We explored species-specific growth capabilities and examined the impact of all possible single gene deletions on growth in 145 core carbon substrates. These analyses revealed multiple strain-specific differences, within and between species and highlight the importance of selecting a diverse range of strains when exploring KpSC metabolism. This diverse set of highly accurate GEMs could be used to inform novel drug design, enhance genomic analyses, and identify novel virulence and resistance determinants. We envisage that these 37 curated strain-specific GEMs, covering all seven taxa of the KpSC, provide a valuable resource to the Klebsiella research community.

Publisher

Cold Spring Harbor Laboratory

Reference63 articles.

1. Quantitative assessment of insertion sequence impact on bacterial genome architecture;Microb Genom,2016

2. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold;Bioinformatics,2019

3. Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis

4. Metabolic diversity of the emerging pathogenic lineages ofKlebsiella pneumoniae

5. Comparative genome-scale modelling ofStaphylococcus aureusstrains identifies strain-specific metabolic capabilities linked to pathogenicity

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3