MetaScore: A novel machine-learning based approach to improve traditional scoring functions for scoring protein-protein docking conformations

Author:

Jung Yong,Geng Cunliang,Bonvin Alexandre M. J. J.,Xue Li C.,Honavar Vasant G.

Abstract

AbstractProtein-protein interactions play a ubiquitous role in biological function. Knowledge of the three-dimensional (3D) structures of the complexes they form is essential for understanding the structural basis of those interactions and how they orchestrate key cellular processes. Computational docking has become an indispensable alternative to the expensive and timeconsuming experimental approaches for determining 3D structures of protein complexes. Despite recent progress, identifying near-native models from a large set of conformations sampled by docking - the so-called scoring problem - still has considerable room for improvement.We present here MetaScore, a new machine-learning based approach to improve the scoring of docked conformations. MetaScore utilizes a random forest (RF) classifier trained to distinguish near-native from non-native conformations using a rich set of features extracted from the respective protein-protein interfaces. These include physico-chemical properties, energy terms, interaction propensity-based features, geometric properties, interface topology features, evolutionary conservation and also scores produced by traditional scoring functions (SFs). MetaScore scores docked conformations by simply averaging of the score produced by the RF classifier with that produced by any traditional SF. We demonstrate that (i) MetaScore consistently outperforms each of nine traditional SFs included in this work in terms of success rate and hit rate evaluated over the top 10 predicted conformations; (ii) An ensemble method, MetaScore-Ensemble, that combines 10 variants of MetaScore obtained by combining the RF score with each of the traditional SFs outperforms each of the MetaScore variants. We conclude that the performance of traditional SFs can be improved upon by judiciously leveraging machine-learning.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3