Explaining heterogeneity in medial entorhinal cortex with task-driven neural networks

Author:

Nayebi AranORCID,Attinger Alexander,Campbell Malcolm G.,Hardcastle KiahORCID,Low Isabel I.C.ORCID,Mallory Caitlin S.ORCID,Mel Gabriel C.ORCID,Sorscher BenORCID,Williams Alex H.,Ganguli Surya,Giocomo Lisa M.ORCID,Yamins Daniel L.K.ORCID

Abstract

AbstractMedial entorhinal cortex (MEC) supports a wide range of navigational and memory related behaviors. Well-known experimental results have revealed specialized cell types in MEC — e.g. grid, border, and head-direction cells — whose highly stereotypical response profiles are suggestive of the role they might play in supporting MEC functionality. However, the majority of MEC neurons do not exhibit stereotypical firing patterns. How should the response profiles of these more “heterogeneous” cells be described, and how do they contribute to behavior? In this work, we took a computational approach to addressing these questions. We first performed a statistical analysis that shows that heterogeneous MEC cells are just as reliable in their response patterns as the more stereotypical cell types, suggesting that they have a coherent functional role. Next, we evaluated a spectrum of candidate models in terms of their ability to describe the response profiles of both stereotypical and heterogeneous MEC cells. We found that recently developed task-optimized neural network models are substantially better than traditional grid cell-centric models at matching most MEC neuronal response profiles — including those of grid cells themselves — despite not being explicitly trained for this purpose. Specific choices of network architecture (such as gated nonlinearities and an explicit intermediate place cell representation) have an important effect on the ability of the model to generalize to novel scenarios, with the best of these models closely approaching the noise ceiling of the data itself. We then performed in silico experiments on this model to address questions involving the relative functional relevance of various cell types, finding that heterogeneous cells are likely to be just as involved in downstream functional outcomes (such as path integration) as grid and border cells. Finally, inspired by recent data showing that, going beyond their spatial response selectivity, MEC cells are also responsive to non-spatial rewards, we introduce a new MEC model that performs reward-modulated path integration. We find that this unified model matches neural recordings across all variable-reward conditions. Taken together, our results point toward a conceptually principled goal-driven modeling approach for moving future experimental and computational efforts beyond overly-simplistic single-cell stereotypes.

Publisher

Cold Spring Harbor Laboratory

Reference41 articles.

1. M. Abadi , P. Barham , J. Chen , Z. Chen , A. Davis , J. Dean , M. Devin , S. Ghemawat , G. Irving , M. Isard , et al. Tensorflow: A system for large-scale machine learning. In 12th {USENIX} symposium on operating systems design and implementation ({OSDI} 16), pages 265–283, 2016.

2. Mapping of a non-spatial dimension by the hippocampal–entorhinal circuit

3. Vector-based navigation using grid-like representations in artificial agents

4. The entorhinal cognitive map is attracted to goals

5. Accurate Path Integration in Continuous Attractor Network Models of Grid Cells

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3