IntAct: a non-disruptive internal tagging strategy to study actin isoform organization and function

Author:

van Zwam M.C.,Bosman W.,van Straaten W.,Weijers S.,Seta E.,Joosten B.,van den Dries K.

Abstract

Actin plays a central role in many biological processes such as cell division, motility and contractility. In birds and mammals, actin has six, highly conserved isoforms, four of which are primarily present in muscles and two that are ubiquitously expressed across tissues. While each isoform has nonredundant biological functions, we currently lack the tools to investigate the molecular basis for isoform-specificity due to their high similarity and the limited possibilities to manipulate actin. To solve this technical challenge, we developed IntAct, an internally tagged actin system to study actin isoform organization in fixed and living cells. We performed a microscopy-based screen for 11 internal actin positions and identified one residue pair that allows for non-disruptive epitope tag integration. Using knockin cell lines with tags into the ubiquitously expressed β-actin, we demonstrate that IntAct actins are properly expressed and that their filament incorporation is indistinguishable from wildtype. We further show that IntAct actins can be visualized in living cells by exploiting the nanobody-targeted ALFA tag and that they keep their ability to interact with the actin-binding proteins profilin and cofilin. Lastly, we also introduced the tag in the ubiquitously expressed γ-actin and demonstrate that the differential localization observed for actin isoforms remains unaltered for IntAct actins. Together, our data demonstrate that IntAct is a promising tool to study actin isoform localization, dynamics and molecular interactions to finally enable the molecular characterization of actin isoforms in biological processes.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3