Author:
Fazli Mehrdad,Sklar Samuel,Porter Michael D.,French Brent A.,Shakeri Heman
Abstract
AbstractUsing wastewater surveillance as a continuous pooled sampling technique has been in place in many countries since the early stages of the outbreak of COVID-19. Since the beginning of the outbreak, many research works have emerged, studying different aspects of viral SARS-CoV-2 DNA concentrations (viral load) in wastewater and its potential as an early warning method. However, one of the questions that has remained unanswered is the quantitative relation between viral load and clinical indicators such as daily cases, deaths, and hospitalizations. Few studies have tried to couple viral load data with an epidemiological model to relate the number of infections in the community to the viral burden. This paper proposes a stochastic wastewater-based SEIR model to showcase the importance of viral load in the early detection and prediction of an outbreak in a community. We built three models based on whether or not they use the case count and viral load data and compared their simulations and forecasting quality. Our results demonstrate that a simple SEIR model based on viral load data can reliably predict the number of infections in the future. Therefore, wastewater-based surveillance is a promising way of monitoring the spread of COVID-19 and can provide city officials with timely information about the circulation of COVID-19 in the community.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献