Adaptive single-channel EEG artifact removal with applications to clinical monitoring

Author:

Dora MatteoORCID,Holcman DavidORCID

Abstract

AbstractObjectiveElectroencephalography (EEG) has become very common in clinical practice due to its relatively low cost, ease of installation, non-invasiveness, and good temporal resolution. Portable EEG devices are increasingly popular in clinical monitoring applications such as sleep scoring or anesthesia monitoring. In these situations, for reasons of speed and simplicity only few electrodes are used and contamination of the EEG signal by artifacts is inevitable. Visual inspection and manual removal of artifacts is often not possible, especially in real-time applications. Our goal is to develop a flexible technique to remove EEG artifacts in these contexts with minimal supervision.MethodsWe propose here a new wavelet-based method which allows to remove artifacts from single-channel EEGs. The method is based on a data-driven renormalization of the wavelet components and is capable of adaptively attenuate artifacts of different nature. We benchmark our method against alternative artifact removal techniques.ResultsWe assessed the performance of the proposed method on publicly available datasets comprising ocular, muscular, and movement artifacts. The proposed method shows superior performances on different kinds of artifacts and signal-to-noise levels. Finally, we present an application of our method to the monitoring of general anesthesia.ConclusionsWe show that our method can successfully attenuate various types of artifacts in single-channel EEG.SignificanceThanks to its data-driven approach and low computational cost, the proposed method provides a valuable tool to remove artifacts in real-time EEG applications with few electrodes, such as monitoring in special care units.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3