Model-based ordination with constrained latent variables

Author:

van der Veen BertORCID,Hui Francis K.C.,Hovstad Knut A.,O’Hara Robert B.

Abstract

SummaryIn community ecology, unconstrained ordination can be used to predict latent variables from a multivariate dataset, which generated the observed species composition.Latent variables can be understood as ecological gradients, which are represented as a function of measured predictors in constrained ordination, so that ecologists can better relate species composition to the environment while reducing dimensionality of the predictors and the response data.However, existing constrained ordination methods do not explicitly account for information provided by species responses, so that they have the potential to misrepresent community structure if not all predictors are measured.We propose a new method for model-based ordination with constrained latent variables in the Generalized Linear Latent Variable Model framework, which incorporates both measured predictors and residual covariation to optimally represent ecological gradients. Simulations of unconstrained and constrained ordination show that the proposed method outperforms CCA and RDA.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

1. Estimating Linear Restrictions on Regression Coefficients for Multivariate Normal Distributions;The Annals of Mathematical Statistics,1951

2. Why understanding the pioneering and continuing contributions of BIOCLIM to species distribution modelling is important;Austral Ecology,2018

3. Burnham, K.P. & Anderson, D.R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd edn. Springer-Verlag, New York. Retrieved July 5, 2021, from https://www.springer.com/gp/book/9780387953649

4. D’Amen, M. , Mod, H.K. , Gotelli, N.J. & Guisan, A. (2017). Disentangling biotic interactions, environmental filters, and dispersal limitation as drivers of species co-occurrence. Dryad. Retrieved June 29, 2020, from http://datadryad.org/stash/dataset/doi:10.5061/dryad.8mv11

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3