Structural Diversity of Photoswitchable Sphingolipids for Optodynamic Control of Lipid Raft Microdomains

Author:

Hartrampf NinaORCID,Leitao Samuel M.ORCID,Winter Nils,Toombs-Ruane Henry,Frank James A.ORCID,Schwille PetraORCID,Trauner DirkORCID,Franquelim Henri G.ORCID

Abstract

AbstractSphingolipids are a structurally diverse class of lipids predominantly found in the plasma membrane of eukaryotic cells. These lipids can laterally segregate with other saturated lipids and cholesterol into lipid rafts; liquid-ordered (Lo) microdomains that act as organizing centers within biomembranes. Owing the vital role of sphingolipids for lipid segregation, controlling their lateral localization is of utmost significance. Hence, we made use of the light-induced trans-cis isomerization of azobenzene-modified acyl chains, to develop a set of photoswitchable sphingolipids, with different headgroups (hydroxyl, galactosyl, phosphocholine) and backbones (sphingosine, phytosphingosine, tetrahydropyran (THP)-blocked sphingosine), able to shuttle between liquid-ordered (Lo) and liquid-disordered (Ld) regions of model membranes upon irradiation with UV-A (λ = 365 nm) and blue (λ = 470 nm) light, respectively. Using combined high-speed atomic force microscopy, fluorescence microscopy, and force spectroscopy, we investigated how these active sphingolipids laterally remodel supported bilayers upon photo-isomerization, notably in terms of domain area changes, height mismatch, line tension, and membrane piercing. Hereby, we show that all sphingosine-(Azo-β-Gal-Cer, Azo-SM, Azo-Cer) and phytosphingosine-based (Azo-α-Gal-PhCer, Azo-PhCer) photolipids behave similarly, promoting a reduction in Lo domain area when in the UV-adapted cis-isoform. In contrast, azo-sphingolipids having THP groups that block H-bonding at the sphingosine backbone (Azo-THP-SM, Azo-THP-Cer) induce an increase in the Lo domain area when in cis, accompanied by a major rise in height mismatch and line tension. These changes were fully reversible upon blue light-triggered isomerization of the various lipids back to trans, pinpointing the role of interfacial interactions for the formation of stable Lo lipid raft domains.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3