Deep learning-based tumor microenvironment segmentation is predictive of tumor mutations and patient survival in non-small-cell lung cancer

Author:

Rączkowski Łukasz,Paśnik Iwona,Kukiełka Michał,Nicoś Marcin,Budzinska Magdalena A.,Kucharczyk Tomasz,Szumiło Justyna,Krawczyk Paweł,Crosetto Nicola,Szczurek EwaORCID

Abstract

AbstractDespite the fact that tumor microenvironment (TME) and gene mutations are the main determinants of progression of the deadliest cancer in the world – lung cancer – their interrelations are not well understood. Digital pathology data provide a unique insight into the spatial composition of the TME. Various spatial metrics and machine learning approaches were proposed for prediction of either patient survival or gene mutations from these data. Still, these approaches are limited in the scope of analyzed features and in their explainability and as such fail to transfer to clinical practice. Here, we generated 23,199 image patches from 55 hematoxylin-and-eosin (H&E)-stained lung cancer tissue sections and annotated them into 9 different tissue classes. Using this dataset, we trained a deep neural network ARA-CNN, achieving per-class AUC ranging from 0.72 to 0.99. We applied the trained network to segment 467 lung cancer H&E images downloaded from The Cancer Genome Atlas (TCGA) database. We used the segmented images to compute human interpretable features reflecting the heterogeneous composition of the TME, and successfully utilized them to predict patient survival (c-index 0.723) and cancer gene mutations (largest AUC 73.5% for PDGFRB). Our approach can be generalized to different cancer types to inform precision medicine strategies.

Publisher

Cold Spring Harbor Laboratory

Reference67 articles.

1. Is H&E morphology coming to an end?

2. Machine Learning Methods for Histopathological Image Analysis;Comput. Struct. Biotechnol. J,2018

3. Precision histology: how deep learning is poised to revitalize histomorphology for personalized cancer care;Npj Precis. Oncol,2017

4. Understanding the tumor immune microenvironment (TIME) for effective therapy

5. Griffiths, A. J. et al. An Introduction to Genetic Analysis. (W. H. Freeman, 2000).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3