The Brazilian Rare Genomes Project: validation of whole genome sequencing for rare diseases diagnosis

Author:

Campos Coelho Antonio VictorORCID,Cordeiro de Azevedo Bruna Mascaro,Lucon Danielle Ribeiro,Nóbrega Maria Soares,de Souza Reis Rodrigo,de Alexandre Rodrigo Bertollo,Silva Moura Livia Maria,de Oliveira Gustavo Santos,Muniz Guedes Rafael Lucas,Caraciolo Marcel Pinheiro,Zurro Nuria Bengala,Cervato Murilo Castro,de Oliveira Filho João BoscoORCID

Abstract

AbstractRare diseases affect 3.2 to 13.2 million individuals in Brazil. The Brazilian Rare Genomes Project is envisioned to further the implementation of genomic medicine into the Brazilian public healthcare system. Here we report the results of the validation of a whole genome sequencing (WGS) procedure for implementation in a clinical laboratory. In addition, we report data quality for the first 1,200 real world patients sequenced. For the validation, we sequenced a well characterized group of 76 samples, including seven gold standard genomes, using a PCR-free WGS protocol on Illumina Novaseq 6000 equipment. We compared the observed variant calls with their expected calls, observing good concordance for single nucleotide variants (SNVs; mean F-measure = 99.82%) and indels (mean F-measure = 99.57%). Copy number variants and structural variants events detection performances were as expected (F-measures 96.6% and 90.3%, respectively). Our protocol presented excellent intra- and inter-assay reproducibility, with coefficients of variation ranging between 0.03% and 0.20% and 0.02% and 0.09%, respectively. Limitations of the procedure include the inability to confidently detect variants such as uniparental disomy, balanced translocations, repeat expansion variants and low-level mosaicism. In summary, the observed performance of the test was in accordance with that seen in the best centers worldwide. The Rare Genomes Project is an important initiative to improve Brazil’s general population access to the innovative WGS technology which has the potential to reduce the time until diagnosis of rare diseases, bringing pivotal improvements for the quality of life of the affected individuals.

Publisher

Cold Spring Harbor Laboratory

Reference31 articles.

1. The burden of rare diseases

2. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test;Genet Med,2018

3. Initial sequencing and analysis of the human genome

4. Wetterstrand KA : DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP). National Human Genome Research Institute, 2020.

5. Sequence assembly demystified

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3