Abstract
AbstractDirect reprogramming of glia into neurons is a potentially promising approach for the replacement of neurons lost to injury or neurodegenerative disorders. Knockdown of the polypyrimidine tract-binding protein Ptbp1 has been recently reported to induce efficient conversion of retinal Müller glia and brain astrocytes into functional neurons. However, genetic analysis of Ptbp1 function in adult glia has not been conducted. Here, we use a combination of genetic lineage tracing, scRNA-Seq, and electrophysiological analysis to show that specific deletion of Ptbp1 in adult retinal Müller glia and brain astrocytes does not lead to any detectable level of glia-to-neuron conversion. Only a few changes in gene expression are observed in glia following Ptbp1 deletion, and glial identity is maintained. These findings highlight the importance of using genetic manipulation and lineage tracing methods in studying cell type conversion.
Publisher
Cold Spring Harbor Laboratory
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献