Intragenomic variation in mutation biases causes underestimation of selection on synonymous codon usage

Author:

Cope Alexander L.ORCID,Shah PremalORCID

Abstract

AbstractPatterns of non-uniform usage of synonymous codons (codon bias) varies across genes in an organism and across species from all domains of life. The bias in codon usage is due to a combination of both non-adaptive (e.g. mutation biases) and adaptive (e.g. natural selection for translation efficiency/accuracy) evolutionary forces. Most population genetics models quantify the effects of mutation bias and selection on shaping codon usage patterns assuming a uniform mutation bias across the genome. However, mutation biases can vary both along and across chromosomes due to processes such as biased gene conversion, potentially obfuscating signals of translational selection. Moreover, estimates of variation in genomic mutation biases are often lacking for non-model organisms. Here, we combine an unsupervised learning method with a population genetics model of synonymous codon bias evolution to assess the impact of intragenomic variation in mutation bias on the strength and direction of natural selection on synonymous codon usage across 49 Saccharomycotina budding yeasts. We find that in the absence of a priori information, unsupervised learning approaches can be used to identify regions evolving under different mutation biases. We find that the impact of intragenomic variation in mutation bias varies widely, even among closely-related species. We show that the overall strength and direction of selection on codon usage can be underestimated by failing to account for intragenomic variation in mutation biases. Interestingly, genes falling into clusters identified by machine learning are also often physically clustered across chromosomes, consistent with processes such as biased gene conversion. Our results indicate the need for more nuanced models of sequence evolution that systematically incorporate the effects of variable mutation biases on codon frequencies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3