Machine learning algorithm to perform ASA Physical Status Classification

Author:

Pozhitkov Alexander,Seth Naini,Kidambi Trilokesh D.,Raytis John,Achuthan Srisairam,Lew Michael W.

Abstract

AbstractBackgroundThe American Society of Anesthesiologists (ASA) Physical Status Classification System defines peri-operative patient scores as 1 (healthy) thru 6 (brain dead). The scoring is used by the anesthesiologists to classify surgical patients based on co-morbidities and various clinical characteristics. The classification is always done by an anesthesiologist prior operation. There is a variability in scoring stemming from individual experiences / biases of the scoring anesthesiologists, which impacts prediction of operating times, length of stay in the hospital, necessity of blood transfusion, etc. In addition, the score affects anesthesia coding and billing. It is critical to remove subjectivity from the process to achieve reproducible generalizable scoring.MethodsA machine learning (ML) approach was used to associate assigned ASA scores with peri-operative patients’ clinical characteristics. More than ten ML algorithms were simultaneously trained, validated, and tested with retrospective records. The most accurate algorithm was chosen for a subsequent test on an independent dataset. DataRobot platform was used to run and select the ML algorithms. Manual scoring was also performed by one anesthesiologist. Intra-class correlation coefficient (ICC) was calculated to assess the consistency of scoringResultsRecords of 19,095 procedures corresponding to 12,064 patients with assigned ASA scores by 17 City of Hope anesthesiologists were used to train a number of ML algorithms (DataRobot platform). The most accurate algorithm was tested with independent records of 2325 procedures corresponding to 1999 patients. In addition, 86 patients from the same dataset were scored manually. The following ICC values were computed: COH anesthesiologists vs. ML – 0.427 (fair); manual vs. ML – 0.523 (fair-to-good); manual vs. COH anesthesiologists – 0.334 (poor).ConclusionsWe have shown the feasibility of using ML for assessing the ASA score. In principle, a group of experts (i.e. physicians, institutions, etc.) can train the ML algorithm such that individual experiences and biases would cancel each leaving the objective ASA score intact. As more data are being collected, a valid foundation for refinement to the ML will emerge.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3