Abstract
AbstractDual-objective 4Pi fluorescence detection enables single molecule localization microscopy, e.g. PALM and STORM, with sub-10 nanometer spatial resolution in 3D. Despite its outstanding sensitivity, wider application of this technique has been hindered by complex instrumentation requirements and the challenging nature of the data analysis. The point spread function (PSF) of the 4Pi optical system is difficult to model, leading to periodic image artifacts and compromised resolution. In this work we report the development of a 4Pi-STORM microscope which obtains improved resolution and accuracy by modeling the 4Pi PSF dynamically, while using a simpler optical design. We introduce dynamic spline PSF models, which incorporate fluctuations in the modulation phase of the experimentally determined PSF, capturing the temporal dynamics of the optical system. Our method reaches the theoretical limits for localization precision while largely eliminating phase-wrapping artifacts, by making full use of the information content of the data. With a 3D precision as high as 2 – 3 nanometers, 4Pi-STORM achieves new levels of image detail, and extends the range of biological questions that can be addressed by fluorescence nanoscopy, as we demonstrate by investigating protein and nucleic acid organization in primary neurons and mammalian mitochondria.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献