Natural transformation protein ComFA exhibits single-stranded DNA translocase activity

Author:

Foster Hannah R.ORCID,Lin Xiaoxuan,Srikant Sriram,Cueny Rachel R.,Falbel Tanya G.,Keck James L.ORCID,Gaudet Rachelle,Burton Briana M.ORCID

Abstract

SummaryNatural transformation is one of the major mechanisms of horizontal gene transfer in bacterial populations and has been demonstrated in numerous species of bacteria. Despite the prevalence of natural transformation, much of the molecular mechanism remains unexplored. One major outstanding question is how the cell powers DNA import, which is rapid and highly processive. ComFA is one of a handful of proteins required for natural transformation in gram-positive bacteria. Its structural resemblance to the DEADbox helicase family has led to a long-held hypothesis that ComFA acts as a motor to help drive DNA import into the cytosol. Here, we explored the helicase and translocase activity of ComFA to address this hypothesis. We followed the DNA-dependent ATPase activity of ComFA and, combined with mathematical modeling, demonstrated that ComFA likely translocates on single-stranded DNA from 5’ to 3’. However, this translocase activity does not lead to DNA unwinding in the conditions we tested. Further, we analyzed the ATPase cycle of ComFA and found that ATP hydrolysis stimulates the release of DNA, providing a potential mechanism for translocation. These findings help define the molecular contribution of ComFA to natural transformation and support the conclusion that ComFA plays a key role in powering DNA uptake.ImportanceCompetence, or the ability of bacteria to take up and incorporate foreign DNA in a process called natural transformation is common in the bacterial kingdom, but understanding of the mechanism is still limited. Increasing evidence in several bacteria confirms that long, contiguous stretches of DNA are imported into cells, and yet how bacteria power processive transformation remains unclear. Our finding that ComFA, a DExD-box helicase required for competence in gram-positive bacteria, translocates on single-stranded DNA from 5’ to 3’, supports the long held hypothesis that ComFA may be the motor powering DNA transport during natural transformation. Moreover, ComFA may be a previously unidentified type of DExD-box helicase—one with the capability of extended translocation on single-stranded DNA.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3