The 2D Ising model, criticality and AIT

Author:

Ruffini G.ORCID,Deco G.ORCID

Abstract

AbstractIn this short note we study the 2D Ising model, a universal computational model which reflects phase transitions and critical phenomena, as a framework for establishing links between systems that exhibit criticality with the notions of complexity. This is motivated in the context of neuroscience applications stemming from algorithmic information theory (AIT). Starting with the original 2D Ising model, we show that — together with correlation length of the spin lattice, susceptibility to a uniform external field — the correlation time of the magnetization time series, the compression ratio of the spin lattice, the complexity of the magnetization time series — as derived from Lempel-Ziv-Welch compression—, and the rate of information transmission in the lattice, all reflect the effects of the phase transition, which results in spacetime pockets of uniform magnetization at all scales. We also show that in the Ising model the insertion of sparse long-range couplings has a direct effect on the critical temperature and other parameters. The addition of positive links extends the ordered regime to higher critical temperatures, while negative links have a stronger, disordering influence at the global scale. We discuss some implications for the study of long-range (e.g., ephaptic) interactions in the human brain and the effects of weak perturbations in neural dynamics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3