Automatic Metadata Generation for Fish Specimen Image Collections

Author:

Pepper JoelORCID,Greenberg JaneORCID,Bakiş YasinORCID,Wang XiaojunORCID,Bart HenryORCID,Breen DavidORCID

Abstract

AbstractMetadata are key descriptors of research data, particularly for researchers seeking to apply machine learning (ML) to the vast collections of digitized specimens. Unfortunately, the available metadata is often sparse and, at times, erroneous. Additionally, it is prohibitively expensive to address these limitations through traditional, manual means. This paper reports on research that applies machine-driven approaches to analyzing digitized fish images and extracting various important features from them. The digitized fish specimens are being analyzed as part of the Biology Guided Neural Networks (BGNN) initiative, which is developing a novel class of artificial neural networks using phylogenies and anatomy ontologies. Automatically generated metadata is crucial for identifying the high-quality images needed for the neural network’s predictive analytics. Methods that combine ML and image informatics techniques allow us to rapidly enrich the existing metadata associated with the 7,244 images from the Illinois Natural History Survey (INHS) used in our study. Results show we can accurately generate many key metadata properties relevant to the BGNN project, as well as general image quality metrics (e.g. brightness and contrast). Results also show that we can accurately generate bounding boxes and segmentation masks for fish, which are needed for subsequent machine learning analyses. The automatic process outperforms humans in terms of time and accuracy, and provides a novel solution for leveraging digitized specimens in ML. This research demonstrates the ability of computational methods to enhance the digital library services associated with the tens of thousands of digitized specimens stored in open-access repositories world-wide.

Publisher

Cold Spring Harbor Laboratory

Reference45 articles.

1. R. S. Beaman and N. Cellinese , “Mass digitization of scientific collections: New opportunities to transform the use of biological specimens and underwrite biodiversity science,” ZooKeys, no. 209, p. 7, 2012.

2. Digitization of Biodiversity Collections Reveals Biggest Data on Biodiversity

3. Darwin Core Maintenance Group, “List of Darwin Core terms,” http://rs.tdwg.org/dwc/doc/list/, 2020.

4. Illinois Natural History Survey, “INHS Fish Collection,” https://fish.inhs.illinois.edu/, 2021.

5. DCMI Usage Board, “DCMI Metadata Terms,” https://www.dublincore.org/specifications/dublin-core/dcmi-terms/, 2020.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3