Gigavalent display of proteins on monodisperse polyacrylamide hydrogels as a versatile modular platform for functional assays and protein engineering

Author:

Fryer ThomasORCID,Rogers Joel David,Mellor Christopher,Minter Ralph,Hollfelder Florian

Abstract

AbstractThe robust modularity of biological components that are assembled into complex functional systems is central to synthetic biology. Here we apply modular “plug and play” design principles to a microscale solid phase protein display system that enables protein purification and functional assays for biotherapeutics. Specifically, we capture protein molecules from cell lysates on polyacrylamide hydrogel display beads (‘PHD beads’), made in microfluidic droplet generators. These monodisperse PHD beads are decorated with predefined amounts of anchors, methacrylate-PEG-benzylguanine (BG) and methacrylate-PEG-chloroalkane (CA). Anchors form covalent bonds with fusion proteins bearing cognate tag recognition (SNAP and Halo-tags) in specific, orthogonal and stable fashion. Given that these anchors are copolymerised throughout the 3D structure of the beads, proteins are also distributed across the entire bead sphere, allowing attachment of ∼109 protein molecules per bead (Ø 20 μm). This mode of attachment reaches a higher density than possible on widely used surface-modified beads, and additionally mitigates surface effects that often complicate studies with proteins on beads. We showcase a diverse array of protein modules that enable the secondary capture of proteins, either non-covalently (IgG and SUMO-tag) or covalently (SpyCatcher, SpyTag, SnpCatcher and SnpTag). Proteins can be displayed in their monomeric forms, but also reformatted as a multivalent display (using secondary capture modules that create branches) to test the contributions of avidity and multivalency towards protein function. Finally, controlled release of modules by irradiation of light is achieved by incorporating the photocleavable protein PhoCl: irradiation severs the displayed protein from the solid support, so that functional assays can be carried out in solution. As a demonstration of the utility of valency engineering, an antibody drug screen is performed, in which an anti-TRAIL-R1 scFv protein is released into solution as monomers-hexamers, showing a ∼50-fold enhanced potency in the pentavalent format. The ease of protein purification on solid support, quantitative control over presentation and release of proteins and choice of valency make this experimental format a versatile, modular platform for large scale functional analysis of proteins, in bioassays of protein-protein interactions, enzymatic catalysis and bacteriolysis.Table of Contents Graphics

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3