Development of amyloid beta gold nanorod aggregates as optoacoustic probes

Author:

Soliman Mahmoud G,Davies Hannah A,Sharkey Jack,Lévy Raphaël,Madine JillianORCID

Abstract

AbstractPropagation of small amyloid beta (Aβ) aggregates (or seeds) has been suggested as a potential mechanism of Alzheimer’s disease progression. Monitoring the propagation of Aβ seeds in an organism would enable testing of this hypothesis and, if confirmed, provide mechanistic insights. This requires a contrast agent for long-term tracking of the seeds. Gold nanorods combine several attractive features for this challenging task, in particular, their strong absorbance in the infrared (enabling optoacoustic imaging) and the availability of several established protocols for surface functionalization. In this work, polymer-coated gold nanorods were conjugated with anti-Aβ antibodies and specifically attached to pre-formed Aβ seeds. The resulting complexes were characterized for their optical properties by UV/Vis spectroscopy and multispectral optoacoustic tomography. The complexes retained their biophysical properties, i.e. their ability to seed Aβ fibril formation. They remained stable in biological media for at least 2 days and showed no toxicity to SH-SY5Y neuroblastoma cells up to 1.5 nM and 6 μM of gold nanorods and Aβ seeds, respectively. Taken together, this study describes the first steps in the development of probes for monitoring the spread of Aβ seeds in animal models.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3