Amplification and attenuation of noisy expression by export processes

Author:

Smith Madeline,Soltani Mohammad,Kulkarni Rahul,Singh Abhyudai

Abstract

AbstractInside mammalian cells, single genes are known to be transcribed in stochastic bursts leading to the synthesis of nuclear RNAs that are subsequently exported to the cytoplasm to create mRNAs. We systematically characterize the role of export processes in shaping the extent of random fluctuations (i.e. noise) in the mRNA level of a given gene. Using the method of Partitioning of Poisson arrivals, we derive an exact analytical expression for the noise in mRNA level assuming that the nuclear retention time of each RNA is an independent and identically distributed random variable following an arbitrary distribution. These results confirm recent experimental/theoretical findings that decreasing the nuclear export rate buffers the noise in mRNA level, and counterintuitively, decreasing the noise in the nuclear retention time enhances the noise in the mRNA level. Next, we further generalize the model to consider a dynamic extrinsic disturbance that affects the nuclear-to-cytoplasm export. Our results show that noise in the mRNA level varies non-monotonically with the disturbance timescale. More specifically, high- and low-frequency external disturbances have little impact on the mRNA noise level, while noise is amplified at intermediate frequencies. In summary, our results systematically uncover how the coupling of bursty transcription with nuclear export can both attenuate or amplify noise in mRNA levels depending on the nuclear retention time distribution and the presence of extrinsic fluctuations.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3