The mechano-sensitive ion channel Piezo mediates Rho activation and actin stress fibre formation in Drosophila nephrocytes

Author:

Koehler Sybille,Denholm Barry

Abstract

AbstractMechanotransduction is an important process of sensing physical forces in the environment of organisms, tissues and cells and transducing them into a biochemical response. Due to their position on the glomerular capillaries, podocytes are exposed to near-constant biomechanical force, which can fluctuate widely. These include shear stress and hydrostatic pressure. A pathological increase in these forces can induce morphological change to podocytes, their detachment from the glomerular basement membrane and subsequent loss into the primary urine. The ability to sense and respond to variations in mechanical force would be beneficial to a cell exposed to these conditions. It is likely podocytes have such mechanisms, however their identity are unknown.Here we investigated the hypothesis that the mechanotransducer Piezo is involved in a mechanotransduction pathway in Drosophila nephrocytes, the podocyte homologue in the fly. We find Piezo is expressed in nephrocytes and localizes to the nephrocyte diaphragm. The Piezo agonist YODA, which stimulates channel opening in the absence of mechanical force, leads to a significant increase in intracellular Ca++ upon shear stress in the nephrocyte. This leads to activation of Rho1, delineating a putative Piezo mechanotransductive pathway in these cells.Loss of function analysis revealed minor defects in nephrocyte filtration function. In contrast, we show that elevated Piezo levels resulted in constantly oscillating Ca++ signals even in the absence of shear stress, increased active Rho1 and accumulation of actin stress fibers, culminating in a severe nephrocyte filtration phenotype, suggesting that pathway hyperactivity is detrimental. We asked if this phenotype could be reversed by blocking Piezo activity pharmacologically using the tarantula toxin GsMTx4. Treatment with GsMTx4 brought levels of activated Rho1 into the normal range.This work delineates a mechanotransductive pathway in nephrocytes involving Piezo, Ca++, Rho1 and the actin-cytoskeleton, and suggest this is part of a mechanism by which nephrocytes sense and adapt to changes in mechanical force.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3