Electro-mechanical transfection for non-viral primary immune cell engineering

Author:

Sido Jessica M.ORCID,Hemphill James B.,McCormack Rameech N.,Beighley Ross D.,Grant Bethany F.,Buie Cullen R.ORCID,Garcia Paulo A.

Abstract

AbstractNon-viral approaches to transfection have emerged a viable option for gene transfer. Electro-mechanical transfection involving use of electric fields coupled with high fluid flow rates is a scalable strategy for cell therapy development and manufacturing. Unlike purely electric field-based or mechanical-based delivery methods, the combined effects result in delivery of genetic material at high efficiencies and low toxicity. This study focuses on delivery of reporter mRNA to show electro-mechanical transfection can be used successfully in human T cells. Rapid optimization of delivery to T cells was observed with efficiency over 90% and viability over 80%. Confirmation of optimized electro-mechanical transfection parameters was assessed in multiple use cases including a 50-fold scale up demonstration. Transcriptome and ontology analysis show that delivery, via electro-mechanical transfection, does not result in gene dysregulation. This study demonstrates that non-viral electro-mechanical transfection is an efficient and scalable method for cell and gene therapy engineering and development.One Sentence SummaryThis study demonstrates that non-viral electro-mechanical transfection is an efficient and scalable method for development of engineered cellular therapies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3