Conditional depletion reveals temporal requirements for the oscillating transcription factor NHR-23/NR1F1 in C. elegans larval progression

Author:

Johnson Londen C.ORCID,Aguilera JosephORCID,Levenson Max T.ORCID,Rechtsteiner AndreasORCID,Vo An A.ORCID,Ragle J. MattORCID,Ward Jordan D.ORCID

Abstract

AbstractNematode molting is a remarkable process where the animals must essentially build a new epidermis underneath the old skin and then rapidly shed the old skin. The study of molting provides a gateway into the developmental program of many core cellular and physiological processes, such as oscillatory gene expression, coordinated intracellular trafficking, steroid hormone signaling, developmental timing, and extracellular remodeling. The nuclear hormone receptor NHR-23/NR1F1 is an important regulator of molting. Imaging and western blot time-courses revealed oscillatory NHR-23::GFP expression in the epithelium that closely followed the reported mRNA expression. Timed depletion experiments using the auxin-inducible degron system revealed that NHR-23/NR1F1 depletion early in a given larval stage caused animals to arrest with only weak molting defects, whereas later depletion resulted in highly penetrant severe molting and morphological defects. This larval arrest was independent of insulin signaling. Despite the weakly penetrant molting defects following early NHR-23/NR1F1 depletion, the epidermal barrier was defective suggesting that NHR-23/NR1F1 is necessary for establishing or maintaining this barrier. NHR-23/NR1F1 coordinates the expression of factors involved in molting, lipid transport/metabolism, and remodeling of the apical extracellular matrix. We propose that NHR-23/NR1F1 is a regulator in a recently discovered large-scale gene oscillatory network coordinating rhythmic skin regeneration.Summary StatementThis work provides insight into how a recently discovered large-scale gene expression oscillator promotes rhythmic skin regeneration in C. elegans.

Publisher

Cold Spring Harbor Laboratory

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3