High Resolution Nanostructure with Two-stages of Exponential Energy Dissipation at the Ultrathin Osteochondral Interface Tissue of Human Knee Joint

Author:

Wang Xiaozhao,Lin Junxin,Li Zonghao,Ma Yuanzhu,Zhang Xianzhu,He Qiulin,Wu Qin,Wei Wei,Yao Xudong,Li Chenglin,Li Wenyue,Xie Shaofang,Hu Yejun,Zhang Shufang,Hong Yi,Li Xu,Chen Weiqiu,Duan Wangping,Ouyang Hongwei

Abstract

ABSTRACTCartilage adheres to subchondral bone via a specific osteochondral interface tissue where forces are transferred from soft cartilage to hard bone without fatigue damage over a lifetime of load cycles. However, the fine structure and mechanical properties of osteochondral interface tissue remain unclear. Here, we identified an ultrathin ∼20-30 μm calcified region with two-layered micro-nano structures of osteochondral interface tissue in human knee joint, which exhibited characteristic biomolecular compositions and complex nanocrystals assembly. Within this region, an exponential increase of modulus (3 orders of magnitude) was conducive to the force transmission which was verified by finite element simulations. The nanoscale heterogeneity of hydroxyapatite, along with enrichment of elastic-responsive protein-titin which is usually present in muscle, endowed the osteochondral tissue with excellent energy dissipation and fatigue resistance properties. Our results provide potential design for high-performance interface materials for osteochondral interface regeneration and functional coatings.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3