Comparative linkage mapping uncovers massive chromosomal inversions that suppress recombination between locally adapted fish populations

Author:

Akopyan MariaORCID,Tigano Anna,Jacobs Arne,Wilder Aryn P.,Baumann HannesORCID,Therkildsen Nina O.

Abstract

AbstractThe role of recombination in genome evolution has long been studied in theory, but until recently empirical investigations had been limited to a small number of model species. Here we compare the recombination landscape and genome collinearity between two populations of the Atlantic silverside (Menidia menidia), a small fish distributed across the steep latitudinal climate gradient of the North American Atlantic coast. Using ddRADseq, we constructed separate linkage maps for locally adapted populations from New York and Georgia and their inter-population lab cross. First, we used one of the linkage maps to improve the current silverside genome assembly by anchoring three large unplaced scaffolds to two chromosomes. Second, we estimated sex-specific recombination rates, finding 2.75-fold higher recombination rates in females than males—one of the most extreme examples of heterochiasmy in a fish. While recombination occurs relatively evenly across female chromosomes, it is restricted to only the terminal ends of male chromosomes. Furthermore, comparisons of female linkage maps revealed suppressed recombination along several massive chromosomal inversions spanning nearly 16% of the genome and segregating between locally adapted populations. Finally, we discerned significantly higher recombination rates across chromosomes in the northern population. In addition to providing valuable resources for ongoing evolutionary and comparative genomic studies, our findings represent a striking example of structural variation that impacts recombination between adaptively divergent populations, providing empirical support for theorized genomic mechanisms facilitating adaptation despite gene flow.

Publisher

Cold Spring Harbor Laboratory

Reference95 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3