Abstract
AbstractIn coastal systems, planktonic and benthic silicifiers compete for the pool of dissolved silicon, a nutrient required to make their skeletons. The contribution of planktonic diatoms to the cycling of silicon in coastal systems is often well characterized, while that of benthic silicifiers such as sponges has rarely been quantified. Herein, silicon fluxes and stocks are quantified for the sponge fauna in the benthic communities of the Bay of Brest (France). A total of 45 siliceous sponge species living in the Bay account for a silicon standing stock of 1215 tons, while that of diatoms is only 27 tons. The silicon reservoir accumulated as sponge skeletons in the superficial sediments of the Bay rises to 1775 tons, while that of diatom skeletons is only 248 tons. These comparatively large stocks of sponge silicon were estimated to cycle two orders of magnitude slower than the diatom stocks. Sponge silicon stocks need years to decades to be renewed, while diatom turnover lasts only days. Although the sponge monitoring over the last 6 years indicates no major changes of the sponge stocks, our results do not allow to conclude if the silicon sponge budget of the Bay is at steady state, and potential scenarios are discussed. The findings buttress the idea that sponges and diatoms play contrasting roles in the marine silicon cycle. The budgets of these silicon major users need to be integrated and their connections revealed, if we aim to reach a full understanding of the silicon cycling in coastal ecosystems.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献