Epigenomic and transcriptomic prioritization of candidate obesity-risk regulatory GWAS SNPs

Author:

Zhang Xiao,Li Tianying,Xiao Hong-Mei,Ehrlich Kenneth C.ORCID,Shen Hui,Deng Hong-Wen,Ehrlich Melanie

Abstract

AbstractConcern about rising rates of obesity has prompted searches for its genetic risk determinants in genome-wide association studies (GWAS). Most genetic variants that contribute to the increased risk of a given trait are probably regulatory single nucleotide polymorphisms (SNPs). However, identifying plausible regulatory SNPs is difficult because of their varied locations relative to their target gene and linkage disequilibrium, which makes most GWAS-derived SNPs only proxies for many fewer functional SNPs. We developed a systematic approach to prioritizing GWAS-derived obesity SNPs using detailed epigenomic and transcriptomic analysis in adipose tissue vs. heterologous tissues. From 50 obesity-related GWAS and 121,064 expanded SNPs, we prioritized 47 potential causal regulatory SNPs (Tier-1 SNPs) for 14 gene loci. A detailed examination of seven of these genes revealed that four (CABLES1, PC, PEMT, and FAM13A) had Tier-1 SNPs that might regulate alternative use of transcription start sites resulting in different polypeptides being generated or different amounts of an intronic microRNA gene being expressed. HOXA11 and long noncoding RNA gene RP11-392O17.1 had Tier-1 SNPs in their 3’ or promoter region, respectively, and strong preferences for expression in subcutaneous vs. visceral adipose tissue. ZBED3-AS1 had two intragenic Tier-1 SNPs, each of which might contribute to mediating obesity risk through modulating long-distance chromatin interactions. We conclude that prioritization of regulatory SNP candidates should focus on their surrounding epigenetic features in a trait-relevant tissue. Our approach not only revealed especially credible novel regulatory SNPs, but also helped evaluate previously highlighted obesity GWAS SNPs that were candidates for transcription regulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3