Evidence for influenza B virus hemagglutinin adaptation to the human host: high cleavability, acid-stability and preference for cool temperature

Author:

Laporte ManonORCID,Stevaert Annelies,Raeymaekers Valerie,Boogaerts Talitha,Nehlmeier Inga,Chiu WinstonORCID,Benkheil Mohammed,Vanaudenaerde Bart,Pöhlmann StefanORCID,Naesens LieveORCID

Abstract

AbstractInfluenza A virus (IAV) and influenza B virus (IBV) cause yearly epidemics with significant morbidity and mortality. When zoonotic IAVs enter the human population, the viral hemagglutinin (HA) requires adaptation to achieve sustained virus transmission. In contrast, IBV has been circulating in humans, its only host, for a long period of time. Whether this entailed adaptation of IBV HA to the human airways is unknown. To address this question, we compared seasonal IAV (A/H1N1 and A/H3N2) and IBV viruses (B/Victoria and B/Yamagata lineage) with regard to host-dependent activity of HA as the mediator of membrane fusion during viral entry. We first investigated proteolytic activation of HA, by covering all type II transmembrane serine protease (TTSP) and kallikrein enzymes, many of which proved present in human respiratory epithelium. Compared to IAV, the IBV HA0 precursor is cleaved by a broader panel of TTSPs and activated with much higher efficiency. Accordingly, knockdown of a single protease, TMPRSS2, was sufficient to abrogate spread of IAV but not IBV in human respiratory epithelial cells. Second, the HA fusion pH proved similar for IBV and human-adapted IAVs (one exception being HA of 1918 IAV). Third, IBV HA exhibited higher expression at 33°C, a temperature required for membrane fusion by B/Victoria HA. This indicates pronounced adaptation of IBV HA to the mildly acidic pH and cooler temperature of human upper airways. These distinct and intrinsic features of IBV HA are compatible with extensive host-adaptation during prolonged circulation of this respiratory virus in the human population.ImportanceInfluenza epidemics are caused by influenza A (IAV) and influenza B (IBV) viruses. IBV causes substantial disease, however it is far less studied than IAV. While IAV originates from animal reservoirs, IBV circulates in humans only. Virus spread requires that the viral hemagglutinin (HA) is active and sufficiently stable in human airways. We here resolve how these mechanisms differ between IBV and IAV. Whereas human IAVs rely on one particular protease for HA activation, this is not the case for IBV. Superior activation of IBV by several proteases should enhance shedding of infectious particles. IBV HA exhibits acid-stability and a preference for 33°C, indicating pronounced adaptation to the human upper airways, where the pH is mildly acidic and a cooler temperature exists. These adaptive features are rationalized by the long existence of IBV in humans, and may have broader relevance for understanding the biology and evolution of respiratory viruses.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3