A deep convolutional neural network approach for astrocyte detection

Author:

Suleymanova Ilida,Balassa Tamas,Tripathi Sushil,Molnar Csaba,Saarma Mart,Sidorova Yulia,Horvath Peter

Abstract

AbstractAstrocytes are involved in brain pathologies such as trauma or stroke, neurodegenerative disorders like Alzheimer’s and Parkinson’s disease, chronic pain, and many others. Determining cell density and timing of morphological and biochemical changes is important for a proper understanding of the role of astrocytes in physiological and pathological conditions. One of the most important of such analyses is astrocytes count within a complex tissue environment in microscopy images. The most widely used approaches for the quantification of microscopy images data are either manual stereological cell counting or semi-automatic segmentation techniques. Detecting astrocytes automatically is a highly challenging computational task, for which we currently lack efficient image analysis tools. In this study, we developed a fast and fully automated software that assesses the number of astrocytes using Deep Convolutional Neural Networks (DCNN). The method highly outperforms state-of-the-art image analysis and machine learning methods and provides detection accuracy and precision comparable to that of human experts. Additionally, the runtime of cell detection is significantly less than other three analyzed computational methods, and it is faster than human observers by orders of magnitude. We applied DCNN-based method to examine the number of astrocytes in different brain regions of rats with opioid-induced hyperalgesia/tolerance (OIH/OIT) as morphine tolerance is believed to activate glial cells in the brain. We observed strong positive correlation between manual cell detection and DCNN-based analysis method for counting astrocytes in the brains of experimental animals.

Publisher

Cold Spring Harbor Laboratory

Reference32 articles.

1. Pelvig, D. P. et al. Neocortical glial cell numbers in human brains. Neurobiology of Aging, 1754–62, (2008).

2. Verkhratsky, A. & Butt, A. M. Neuroglia: Definition, Classification, Evolution, Numbers, Development. Glial Physiology and Pathophysiology, 73–104, (2013).

3. New roles for astrocytes in developing synaptic circuits;Communicative and Integrative Biology,2008

4. Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders;Current Opinion in Neurobiology,2014

5. NIH Image to ImageJ: 25 years of image analysis;Nature Methods,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3