Experimentally reduced insulin/IGF-1 signalling in adulthood extends lifespan of parents and improves Darwinian fitness of their offspring

Author:

Lind Martin I.ORCID,Ravindran Sanjana,Sekajova ZuzanaORCID,Carlsson Hanne,Hinas Andrea,Maklakov Alexei A.

Abstract

AbstractClassical theory maintains that ageing evolves via energy trade-offs between reproduction and survival leading to accumulation of unrepaired cellular damage with age. In contrast, the emerging new theory postulates that ageing evolves because of deleterious late-life hyper-function of reproduction-promoting genes leading to excessive biosynthesis in late-life. The hyper-function theory uniquely predicts that optimizing nutrient-sensing molecular signalling in adulthood can simultaneously postpone ageing and increase Darwinian fitness. Here we show that reducing evolutionarily conserved insulin/IGF-1 nutrient-sensing signalling via daf-2 RNA interference (RNAi) fulfils this prediction in Caenorhabditis elegans nematodes. Long-lived daf-2 RNAi parents showed normal fecundity as self-fertilizing hermaphrodites and improved late-life reproduction when mated to males. Remarkably, the offspring of daf-2 RNAi parents had higher Darwinian fitness across three different genotypes. Thus, reduced nutrient-sensing signalling in adulthood improves both parental longevity and offspring fitness supporting the emerging view that sub-optimal gene expression in late-life lies at the heart of ageing.Impact StatementUnderstanding mechanisms underpinning ageing is fundamental to improving quality of life in an increasingly long-lived society. Recent breakthroughs have challenged the long-standing paradigm that the energy trade-off between reproduction and somatic maintenance causes organismal senescence via slow accumulation of unrepaired cellular damage with age. The emerging new theory of ageing provides a conceptually novel framework by proposing that ageing is a direct consequence of physiological processes optimized for early-life function, such as growth and early-life reproduction, that are running ‘too high’ (i.e. at hyperfunction) in late adulthood. Contrary to the classic view based on damage accumulation, the hyperfunction theory proposes that suboptimal gene expression in late-life causes ageing via excessive biosynthesis. Thus, the hyperfunction theory uniquely predicts that longevity and Darwinian fitness can be simultaneously increased by reducing unnecessarily high levels of nutrient-sensing signalling in adulthood. Here we show that reducing evolutionarily conserved nutrient-sensing signalling pathway fulfils this prediction in Caenorhabditis elegans nematodes. We found that downregulation of the insulin/IGF-1 signalling in adult C. elegans nematodes not only improves longevity but, most intriguingly, increases fitness of the resulting offspring in the next generation. We found support for increase in offspring fitness across different genetic backgrounds. Our findings contradict the theoretical conjecture that energy trade-offs between growth, reproduction and longevity is the universal cause of senescence and provide strong experimental support for the emerging hyperfunction theory of ageing.

Publisher

Cold Spring Harbor Laboratory

Reference57 articles.

1. Increased Transmission of Mutations by Low-Condition Females: Evidence for Condition-Dependent DNA Repair

2. Regulation of longevity by the reproductive system

3. Sexually antagonistic male signals manipulate germline and soma of C. elegans hermaphrodites;Current Biology,2016

4. Berger, D. , J. Stangberg , K. Grieshop , I. Martinossi-Allibert , and G. Arnqvist . 2017. Temperature effects on life-history trade-offs, germline maintenance and mutation rate under simulated climate warming. Proceedings of the Royal Society B-Biological Sciences 284.

5. Aging and Immortality: Quasi-Programmed Senescence and Its Pharmacologic Inhibition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3