Tellurium: A Python Based Modeling and Reproducibility Platform for Systems Biology

Author:

Choi KiriORCID,Medley J. KyleORCID,Cannistra Caroline,König Matthias,Smith Lucian,Stocking Kaylene,Sauro Herbert M.ORCID

Abstract

AbstractIn this article, we present Tellurium, a powerful Python-based integrated environment designed for model building, analysis, simulation and reproducibility in systems and synthetic biology. Tellurium is a modular, cross-platform, and open-source integrated development environment (IDE) composed of multiple libraries, plugins, and specialized modules and methods. Tellurium ensures exchangeability and reproducibility of computational models by supporting SBML (Systems Biology Markup Language), SED-ML (Simulation Experiment Description Markup Language), the COMBINE archive, and SBOL (Synthetic Biology Open Language). Tellurium is a self-contained modeling platform which comes with a fully configured Python distribution independent of other local Python installations on the target machine. The main interface is based on the Spyder IDE which has a highly accessible user interface akin to MATLAB (https://www.mathworks.com/). Tellurium uses libRoadRunner as the default SBML simulation engine due to its superior performance, scalability and ease of integration. libRoadRunner supports deterministic simulations, stochastic simulations and steady state analyses. Tellurium also includes Antimony, a human-readable model definition language which can be converted to and from SBML. Other standard Python scientific libraries such as NumPy, SciPy, and matplotlib are included by default. Additionally, we include several user-friendly plugins and advanced modules for a wide-variety of applications, ranging from visualization tools to complex algorithms for bifurcation analysis and multi-dimensional parameter scanning. By combining multiple libraries, plugins, and modules into a single package, Tellurium provides a unified but extensible solution for biological modeling and simulation.

Publisher

Cold Spring Harbor Laboratory

Reference49 articles.

1. Angeli,D. , Ferrell,J.E. , and Sontag,E.D. 2004. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. USA 101, 1822–1827.

2. New mini- zincin structures provide a minimal scaffold for members of this metallopeptidase superfamily

3. Bergmann,F.T. , Cooper,J. , Le Novere,N. , et al. 2013. Simulation experiment description markup language (SED-ML): Level 1 version 2.

4. Computational tools for modeling protein networks;Current Proteomics,2006

5. LibSBML: an API Library for SBML

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3