Sampling native-like structures of RNA-protein complexes through Rosetta folding and docking

Author:

Kappel Kalli,Das Rhiju

Abstract

AbstractRNA-protein complexes underlie numerous cellular processes including translation, splicing, and posttranscriptional regulation of gene expression. The structures of these complexes are crucial to their functions but often elude high-resolution structure determination. Computational methods are needed that can integrate low-resolution data for RNA-protein complexes while modeling de novo the large conformational changes of RNA components upon complex formation. To address this challenge, we describe a Rosetta method called RNP-denovo to simultaneously fold and dock RNA to a protein surface. On a benchmark set of structurally diverse RNA-protein complexes that are not solvable with prior strategies, this fold-and-dock method consistently sampled native-like structures with better than nucleotide resolution. We revisited three past blind modeling challenges in which previous methods gave poor results: human telomerase, an RNA methyltransferase with a ribosomal RNA domain, and the spliceosome. When coupled with the same sparse FRET, cross-linking, and functional data used in previous work, RNP-denovo gave models with significantly improved accuracy. These results open a route to computationally modeling global folds of RNA-protein complexes from low-resolution data.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3