Abstract
AbstractThe broad-scale environment plays a substantial role in shaping modern marine ecosystems, but the degree to which palaeocommunities were influenced by their environment is unclear. To investigate how broad-scale environment influenced the community ecology of early animal ecosystems we employed spatial point process analyses to examine the community structure of seven bedding-plane assemblages of late Ediacaran age (558–550 Ma), drawn from a range of environmental settings and global localities. The studied palaeocommunities exhibit marked differences in the response of their component taxa to sub-metre-scale habitat heterogeneities on the seafloor. Shallow-marine palaeocommunities were heavily influenced by local habitat heterogeneities, in contrast to their deep-water counterparts. Lower species richness in deep-water Ediacaran assemblages compared to shallow-water counterparts across the studied time-interval could have been driven by this environmental patchiness, because habitat heterogeneities correspond to higher diversity in modern marine environments. The presence of grazers and detritivores within shallow-water communities may have promoted local patchiness, potentially initiating a chain of increasing heterogeneity of benthic communities from shallow to deep-marine depositional environments. Our results provide quantitative support for the “Savannah” hypothesis for early animal diversification – whereby Ediacaran diversification was driven by patchiness in the local benthic environment.Author ContributionsE. Mitchell conceived this paper and wrote the first draft. N. Bobkov, A. Kolesnikov, N. Sozonov and D. Grazhdankin collected the data for DS surface. N. Bobkov and N. Sozonov performed the analyses on DS surface. N. Bykova, S. Xiao, and D. Grazhdankin collected the data for WS, KH1 and KH2 surfaces and E. Mitchell performed the analyses. A. Dhungana and A. Liu collected the data for FUN4 and FUN5 surfaces and A. Dhungana performed the analyses. T. Mustill and D. Grazhdankin collected the data for KS and T. Mustill and E. Mitchell performed the analyses. I. Hogarth developed the software for preliminary KS surface analyses. E. Mitchell, N. Bobkov, N. Bykova, A. Dhungana, A. Kolesnikov, A. Liu, S. Xiao and D. Grazhdankin discussed the results and prepared the manuscript.
Publisher
Cold Spring Harbor Laboratory