Promoter capture drives the emergence of proto-genes inEscherichia coli

Author:

uz-Zaman Md. Hassan,D’Alton Simon,Barrick Jeffrey E.,Ochman HowardORCID

Abstract

AbstractThe phenomenon ofde novogene birth—the emergence of genes from non-genic sequences—has received considerable attention due to the widespread occurrence of genes that are unique to particular species or genomes. Most instances ofde novogene birth have been recognized through comparative analyses of genome sequences in eukaryotes, despite the abundance of novel, lineage-specific genes in bacteria and the relative ease with which bacteria can be studied in an experimental context. Here, we explore the genetic record of theEscherichia coliLong-Term Evolution Experiment (LTEE) for changes indicative of “proto-genic” phases of new gene birth in which non-genic sequences evolve stable transcription and/or translation. Over the time-span of the LTEE, non-genic regions are frequently transcribed, translated and differentially expressed, thereby serving as raw material for new gene emergence. Most proto-genes result either from insertion element activity or chromosomal translocations that fused pre-existing regulatory sequences to regions that were not expressed in the LTEE ancestor. Additionally, we identified instances of proto-gene emergence in which a previously unexpressed sequence was transcribed after formation of an upstream promoter. Tracing the origin of the causative mutations, we discovered that most occurred early in the history of the LTEE, often within the first 20,000 generations, and became fixed soon after emergence. Our findings show that proto-genes emerge frequently within evolving populations, persist stably, and can serve as potential substrates for new gene formation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3