Extended discrete gene regulatory network model for theArabidopsis thalianaroot-hair cell fate

Author:

Castillo-Jiménez AarónORCID,Garay-Arroyo AdrianaORCID,de La Paz Sánchez M.ORCID,García-Ponce Berenice,Martínez-García Juan CarlosORCID,Álvarez-Buylla Elena R.

Abstract

AbstractThe differentiation of the two cell types of the root epidermis, atrichoblasts, which give rise to hair cells, and atrichoblasts, which do not develop as hair cells, is determined by a complex regulatory network of transcriptional factors and hormones that act in concert in space and time to define a characteristic pattern of rows of hair cells and non-hair cells interspersed with each other throughout the root epidermis ofArabidopsis thaliana. Previous models have defined a minimal regulatory network that recovers the Wild Type phenotype and some mutants but fails to recover most of the mutant phenotypes, thus limiting its ability to spread. In this work, we propose a diffusion-coupled regulatory genetic network or meta-Gene Regulatory Network model extended to the model previously published by our research group, to describe the patterns of organization of the epidermis of the root epidermis ofArabidopsis thaliana. This network fully or partially recovers loss-of-function mutants of the identity regulators of the epidermal cell types considered within the model. Not only that, this new extended model is able to describe in quantitative terms the distribution of trichoblasts and atrichoblasts defined at each cellular position with respect to the cortex cells so that it is possible to compare the proportions of each cell type at those positions with that reported in each of the mutants analyzed. In addition, the proposed model allows us to explore the importance of the diffusion processes that are part of the lateral inhibition mechanism underlying the network dynamics and their relative importance in determining the pattern in the Wild Type phenotype and the different mutants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3