Phase-amplitude coupling of NREM sleep oscillations is unaffected by pre-sleep learning but related to overnight memory gains depending on the declarative learning paradigm

Author:

Cross NathanORCID,O’Byrne Jordan,Weiner Oren M.,Giraud Julia,Perrault Aurore A.ORCID,Dang-Vu Thien ThanhORCID

Abstract

AbstractThere is growing evidence in humans linking the temporal coupling between spindles and slow oscillations during NREM sleep with the overnight stabilization of memories encoded from daytime experiences in humans. However, whether the type and strength of learning influence that relationship is still unknown. Here we tested whether the amount or type of verbal word-pair learning prior to sleep affects subsequent phase-amplitude coupling (PAC) between spindles and slow oscillations (SO). We measured the strength and preferred timing of such coupling in the EEG of 41 healthy human participants over a post-learning and control night, to compare intra-individual changes with inter-individual differences. We leveraged learning paradigms of varying word-pair (WP) load: 40 WP learned to a minimum criterion of 60% correct (n=11); 40 WP presented twice (n=15); 120 WP presented twice (n=15). There were no significant differences in the preferred phase or strength between the control and post-learning nights, in all learning conditions. We observed an overnight consolidation effect (improved performance at delayed recall) for the criterion learning condition only, and only in this condition was the overnight change in memory performance significantly positively correlated with the phase of SO-spindle coupling. These results suggest that the coupling of brain oscillations during human NREM sleep are stable traits that are not modulated by the amount of pre-sleep learning, yet are implicated in the sleep-dependent consolidation of memory.

Publisher

Cold Spring Harbor Laboratory

Reference70 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3