Connecting Chromatin Structures to Gene Regulation Using Dynamic Polymer Simulations

Author:

Fu Yi,Clark Finnegan,Nomikou Sofia,Tsirigos Aristotelis,Lionnet TimotheeORCID

Abstract

AbstractThe transfer of regulatory information between distal loci on chromatin is thought to involve physical proximity, but key biophysical features of these contacts remain unclear. For instance, it is unknown how close and for how long two loci need to be in order to productively interact. The main challenge is that it is currently impossible to measure chromatin dynamics with high spatiotemporal resolution at scale. Polymer simulations provide an accessible and rigorous way to test biophysical models of chromatin regulation, yet there is a lack of simple and general methods for extracting the values of model parameters. Here we adapt the Nelder-Mead simplex optimization algorithm to select the best polymer model matching a given Hi-C dataset, using theMYClocus as an example. The model’s biophysical parameters predict a compartmental rearrangement of theMYClocus in leukemia, which we validate with single-cell measurements. Leveraging trajectories predicted by the model, we find that loci with similar Hi-C contact frequencies can exhibit widely different contact dynamics. Interestingly, the frequency of productive interactions between loci exhibits a non-linear relationship with their Hi-C contact frequency when we enforce a specific capture radius and contact duration. These observations are consistent with recent experimental observations and suggest that the dynamic ensemble of chromatin configurations, rather than average contact matrices, is required to fully predict long-range chromatin interactions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3