Deciphering the Functional Roles of Individual Cancer Alleles Across Comprehensive Cancer Genomic Studies

Author:

Ma Jiayan (Yoshii)ORCID,Ting Stephanie,Tam Bartholomew,Pham Timothy,Reich Michael,Mesirov Jill,Tamayo Pablo,Kim William

Abstract

AbstractCancer genome data has been growing in both size and complexity, primarily driven by advances in next-generation sequencing technologies, such as Pan-cancer data from TCGA, ICGC, and single-cell sequencing. Yet, discerning the functional role of individual genomic lesions remains a substantial challenge due to the complexity and scale of the data. Previously, we introduced REVEALER, which identifies groups of genomic alterations that significantly associate with target functional profiles or phenotypes, such as pathway activation, gene dependency, or drug response. In this paper, we present a new mathematical formulation of the algorithm. This version (REVEALER 2.0) is considerably more powerful than the original, allowing for rapid processing and analysis of much larger datasets and facilitating higher-resolution discoveries at the level of individual alleles. REVEALER 2.0 employs the Conditional Information Coefficient (CIC) to pinpoint features that are either complementary or mutually exclusive but still correlate with the target functional profile. The aggregation of these features provides a better explanation for the target functional profile than any single alteration on its own. This is indicative of scenarios where several activating genomic lesions can initiate or stimulate a key pathway or process. We replaced the initial three-dimensional kernel estimation with multiple precomputed one-dimensional kernel estimations, resulting in an approximate 150x increase in speed and efficiency. This improvement, combined with its efficient execution, makes REVEALER 2.0 suitable for much larger datasets and a more extensive range of genomic challenges.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3