UNLOCKING ROBOTIC POTENTIAL THROUGH MODERN ORGAN SEGMENTATION

Author:

Chaudhary AnshORCID

Abstract

AbstractDeep learning has revolutionized the approach to complex data-driven problems, specifically in medical imaging, where its techniques have significantly raised efficiency in organ segmentation. The urgent need to enhance the depth and precision of organ-based classification is an essential step towards automation of medical operation and diagnostics. The research aims to investigate the effect and potential advantages transformer models have on binary semantic segmentation, the method utilized for the project. Hence, I employed the SegFormer model, for its lightweight architecture, as the primary deep learning model, alongside the Unet. A custom 2D computerized tomography (CT) scan dataset was assembled, CT-Org2D through meticulous operations. Extensive experiments showed that, in contrast to the selected models, the task’s simplicity required a redesigned Unet architecture with reduced complexity. This model yielded impressive results: Precision, Recall, and IOU scores of 0.91, 0.92, and 0.85 respectively. The research serves as a starting point, motivating further exploration, through different methodologies, to achieve even greater efficiency in organ segmentation.

Publisher

Cold Spring Harbor Laboratory

Reference11 articles.

1. T. Nolan , “CT volumes with multiple organ segmentations (CT-ORG),” 2019. Available: Retrieved October 28, 2023.

2. M. Shepard , “A look at the actual device costs for hospitals,” Medical Product Outsourcing, April 3, 2021. Available: https://www.mpo-mag.com/issues/2021-03-01/view_columns/a-look-at-the-actual-device-costs-for-hospitals

3. E. Xie et al., “SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers,” arXiv, pp. 1–18, 2021. Available: https://doi.org/arXiv:2105.15203

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3