Biomolecular condensates in fungi are tuned to function at specific temperatures

Author:

Stormo Benjamin M.ORCID,McLaughlin Grace A.ORCID,Frederick Logan K.,Jalihal Ameya P.ORCID,Cole Sierra JORCID,Seim IanORCID,Dietrich Fred S.,Gladfelter Amy S.ORCID

Abstract

SummaryTemperature can impact every reaction and molecular interaction essential to a cell. For organisms that cannot regulate their own temperature, a major challenge is how to adapt to temperatures that fluctuate unpredictability and on variable timescales. Biomolecular condensation offers a possible mechanism for encoding temperature-responsiveness and robustness into cell biochemistry and organization. To explore this idea, we examined temperature adaptation in a filamentous-growing fungus calledAshbya gossypiithat engages biomolecular condensates containing the RNA-binding protein Whi3 to regulate mitosis and morphogenesis. We collected wild isolates ofAshbyathat originate in different climates and found that mitotic asynchrony and polarized growth, which are known to be controlled by the condensation of Whi3, are temperature sensitive. Sequence analysis in the wild strains revealed changes to specific domains within Whi3 known to be important in condensate formation. Using anin vitrocondensate reconstitution assay we found that temperature impacts the relative abundance of protein to RNA within condensates and that this directly impacts the material properties of the droplets. Finally, we found that exchanging Whi3 genes between warm and cold isolates was sufficient to rescue some, but not all, condensate-related phenotypes. Together these data demonstrate that material properties of Whi3 condensates are temperature sensitive, that these properties are important for function, and that sequence optimizes properties for a given climate.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3