Characterizing US spatial connectivity: implications for geographical disease dynamics and metapopulation modeling

Author:

Pullano GiuliaORCID,Alvarez-Zuzek Lucila G.,Colizza VittoriaORCID,Bansal Shweta

Abstract

SummaryBackgroundHuman mobility is expected to be a critical factor in the geographic diffusion of infectious diseases, and this assumption led to the implementation of social distancing policies during the early fight against the COVID-19 emergency in the United States. Yet, because of substantial data gaps in the past, what still eludes our understanding are the following questions: 1) How does mobility contribute to the spread of infection within the United States at local, regional, and national scales? 2) How do seasonality and shifts in behavior affect mobility over time? 3) At what geographic level is mobility homogeneous across the United States? Addressing these questions is critical to developing accurate transmission models, predicting the spatial propagation of disease across scales, and understanding the optimal geographical and temporal scale for the implementation of control policies.MethodsWe address this problem using high-resolution human mobility data measured via mobile app usage. We compute the daily coupling network between US counties, and we integrate our mobility data into a spatially explicit transmission model to reproduce the national invasion of the first wave of SARS-CoV-2 in the US.FindingsTemporally, we observe that intercounty connectivity is largely seasonal and was unperturbed by mobility restrictions during the early phase of the COVID-19 pandemic. Spatially, we identify 104 geographic clusters of US counties that are highly connected by mobility within the cluster and more sparsely connected to counties outside the cluster. These clusters are stable across time and highly overlap with US state boundaries. Together, these results suggest that intercounty connectivity in the US is relatively static across time and is homogeneous at the sub-state level. We also find that while having access to county-level, daily mobility data best captures the spatial invasion of disease, static mobility data aggregated to the scale of our mobility data-based clusters also performs well in capturing spatial diffusion of infection.InterpretationOur work demonstrates that intercounty mobility was negligibly affected outside the lockdown period of Spring 2020, explaining the broad spatial distribution of COVID-19 outbreaks in the US during the early phase of the pandemic. Such geographically dispersed outbreaks place a significant strain on national public health resources and necessitate complex metapopulation modeling approaches for predicting disease dynamics and control design. We thus inform the design of such metapopulation models to balance high disease predictability with low data requirements.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3