An integrated transcriptomic cell atlas of human endoderm-derived organoids

Author:

Xu Quan,Halle Lennard,Hediyeh-zadeh Soroor,Kuijs Merel,Kilik Umut,Yu Qianhui,Frum Tristan,Adam Lukas,Parikh Shrey,Gander Manuel,Kfuri-Rubens Raphael,Klein Dominik,He Zhisong,Fleck Jonas Simon,Oost Koen,Kahnwald Maurice,Barbiero Silvia,Mitrofanova Olga,Maciag Grzegorz,Jensen Kim B.,Lutolf Matthias,Liberali Prisca,Beumer Joep,Spence Jason R.,Treutlein BarbaraORCID,Theis Fabian J.ORCID,Camp J. GrayORCID

Abstract

Human stem cells can generate complex, multicellular epithelial tissues of endodermal originin vitrothat recapitulate aspects of developing and adult human physiology. These tissues, also called organoids, can be derived from pluripotent stem cells or tissue-resident fetal and adult stem cells. However, it has remained difficult to understand the precision and accuracy of organoid cell states through comparison with primary counterparts, and to comprehensively assess the similarity and differences between organoid protocols. Advances in computational single-cell biology now allow the integration of datasets with high technical variability. Here, we integrate single-cell transcriptomes from 218 samples covering organoids of diverse endoderm-derived tissues including lung, pancreas, intestine, liver, biliary system, stomach, and prostate to establish an initial version of a human endoderm organoid cell atlas (HEOCA). The integration includes nearly one million cells across diverse conditions, data sources and protocols. We align and compare cell types and states between organoid models, and harmonize cell type annotations by mapping the atlas to primary tissue counterparts. To demonstrate utility of the atlas, we focus on intestine and lung, and clarify ontogenic cell states that can be modeledin vitro. We further provide examples of mapping novel data from new organoid protocols to expand the atlas, and showcase how integrating organoid models of disease into the HEOCA identifies altered cell proportions and states between healthy and disease conditions. The atlas makes diverse datasets centrally available, and will be valuable to assess organoid fidelity, characterize perturbed and diseased states, and streamline protocol development.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3