Acetylcholine Promotes Directionally Biased Glutamatergic Retinal Waves

Author:

Zhang KathyORCID,Su Ashley,Wang YixiangORCID,Crair MichaelORCID

Abstract

AbstractSpontaneous retinal waves are a critical driving force for the self-organization of the mouse visual system prior to eye-opening. Classically characterized as taking place in three distinct stages defined by their primary excitatory drive, Stage II waves during the first postnatal week are propagated through the volume transmission of acetylcholine while Stage III retinal waves during the second postnatal week depend on glutamatergic transmission from bipolar cells. However, both late Stage II and early Stage III retinal waves share a defining propagation bias toward the temporal-to-nasal direction despite developmental changes in the underlying cholinergic and glutamatergic retinal networks. Here, we leverage genetic and pharmacological manipulations to investigate the relationship between cholinergic and glutamatergic neurotransmission during the transition between Stage II and Stage III wavesin vivo.We find that the cholinergic network continues to play a vital role in the propagation of waves during Stage III after the primary mode of neurotransmission changes to glutamate. In the absence of glutamatergic waves, compensatory cholinergic activity persists but lacks the propagation bias typically observed in Stage III waves. In the absence of cholinergic waves, gap junction-mediated activity typically associated with Stage I waves persists throughout the developmental window in which Stage III waves usually emerge and lacks the spatiotemporal profile of normal Stage III waves, including a temporal-to-nasal propagation bias. Finally, we show that cholinergic signaling through β2 subunit-containing nicotinic acetylcholine receptors, essential for Stage II wave propagation, is also critical for Stage III wave directionality.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3