Rhizonet: Image Segmentation for Plant Root in Hydroponic Ecosystem

Author:

Ushizima DanielaORCID,Sordo ZinebORCID,Andeer PeterORCID,Sethian JamesORCID,Northen TrentORCID

Abstract

ABSTRACTDigital cameras have the ability to capture daily images of plant roots, allowing for the estimation of root biomass. However, the complexities of root structures and noisy image backgrounds pose challenges for advanced phenotyping. Manual segmentation methods are laborious and prone to errors, which hinders experiments involving several plants. This paper introduces Rhizonet, a supervised deep learning approach for semantic segmentation of plant root images. Rhizonet harnesses a Residual U-Net backbone to enhance prediction accuracy, incorporating a convex hull operation to precisely outline the largest connected component. The primary objective is to accurately segment the biomass of the roots and analyze their growth over time. The input data comprises color images of various plant samples within a hydroponic environment known as EcoFAB, subject to specific nutrition treatments. Validation tests demonstrate the robust generalization of the model across experiments. This research pioneers advances in root segmentation and phenotype analysis by standardizing processes and facilitating the analysis of thousands of images while reducing subjectivity. The proposed root segmentation algorithms contribute significantly to the precise assessment of the dynamics of root growth under diverse plant conditions.

Publisher

Cold Spring Harbor Laboratory

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3