Anesthetic oxygen use and sex are critical factors in the FLASH sparing effect

Author:

Tavakkoli Armin D.,Clark Megan A.,Kheirollah Alireza,Sloop Austin M.,Soderholm Haille E.,Daniel Noah J.,Petusseau Arthur F.,Huang Yina H.,Thomas Charles R.,Jarvis Lesley A.,Zhang Rongxiao,Pogue Brian W.,Gladstone David J.,Hoopes P. Jack

Abstract

AbstractIntroductionUltra-high dose-rate (UHDR) radiation has been reported to spare normal tissue compared to conventional dose-rate (CDR) radiation. However, reproducibility of the FLASH effect remains challenging due to varying dose ranges, radiation beam structure, and in-vivo endpoints. A better understanding of these inconsistencies may shed light on the mechanism of FLASH sparing. Here, we evaluate whether sex and/or use of 100% oxygen as carrier gas during irradiation contribute to the variability of the FLASH effect.MethodsC57BL/6 mice (24 male, 24 female) were anesthetized using isoflurane mixed with either room air or 100% oxygen. Subsequently, the mice received 27 Gy of either 9 MeV electron UHDR or CDR to a 1.6 cm2diameter area of the right leg skin using the Mobetron linear accelerator. The primary post-radiation endpoint was time to full thickness skin ulceration. In a separate cohort of mice (4 male, 4 female) skin oxygenation was measured using PdG4 Oxyphor under identical anesthesia conditions.ResultsIn the UHDR group, time to ulceration was significantly shorter in mice that received 100% oxygen compared to room air, and amongst them female mice ulcerated sooner compared to males. However, no significant difference was observed between male and female UHDR mice that received room air. Oxygen measurements showed significantly higher tissue oxygenation using 100% oxygen as the anesthesia carrier gas compared to room air, and female mice showed higher levels of tissue oxygenation compared to males under 100% oxygen.ConclusionThe FLASH sparing effect is significantly reduced using oxygen during anesthesia compared to room air. The FLASH sparing was significantly lower in female mice compared to males. Both tissue oxygenation and sex are likely sources of variability in UHDR studies. These results suggest an oxygen-based mechanism for FLASH, as well as a key role for sex in the FLASH skin sparing effect.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3