Bdellovibrio’sPrey-Independent Growth is Fuelled by Amino Acids as a Carbon Source

Author:

Herencias C,Rivero-Buceta MVORCID,Salgado SORCID,Baquero F,del Campo RORCID,Nogales JORCID,Prieto MAORCID

Abstract

ABSTRACTIdentifying the nutritional requirements and growth conditions of microorganisms is crucial for determining their applicability in industry and understanding their role in clinical ecology. Predatory bacteria such asBdellovibrio bacteriovorushave emerged as promising tools for combating infections by human bacterial pathogens due to their natural killing features.Bdellovibrio’slifecycle occurs inside prey cells, using the cytoplasm as a source of nutrients and energy. However, this lifecycle supposes a challenge when determining the specific uptake of metabolites from the prey to complete the growth inside cells, a process that has not been completely elucidated. Here, following a model-based approach we illuminate the ability ofBdellovibrio bacteriovorusto replicate DNA, increase biomass, and generate adenosine triphosphate (ATP) in an amino acid-based rich media in the absence of prey, keeping intact its predatory capacity. In this culture, we determined the main carbon sources used and their preference, being glutamate, serine, aspartate, isoleucine, and threonine. This study offers new insights into the role of predatory bacteria in natural environments and establishes the basis for developing newBdellovibrioapplications using appropriate metabolic and physiological methodologies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3