Development and Analysis of Multiscale Models for Tuberculosis: From Molecules to Populations

Author:

Nanda PariksheetORCID,Budak MaralORCID,Michael Christian T.ORCID,Krupinsky KathrynORCID,Kirschner Denise E.ORCID

Abstract

AbstractAlthough infectious disease dynamics are often analyzed at the macro-scale, increasing numbers of drug-resistant infections highlight the importance of within-host modeling that simultaneously solves across multiple scales to effectively respond to epidemics. We review multiscale modeling approaches for complex, interconnected biological systems and discuss critical steps involved in building, analyzing, and applying such models within the discipline of model credibility. We also present our two tools: CaliPro, for calibrating multiscale models (MSMs) to datasets, and tunable resolution, for fine- and coarse-graining sub-models while retaining insights. We include as an example our work simulating infection withMycobacterium tuberculosisto demonstrate modeling choices and how predictions are made to generate new insights and test interventions. We discuss some of the current challenges of incorporating novel datasets, rigorously training computational biologists, and increasing the reach of MSMs. We also offer several promising future research directions of incorporating within-host dynamics into applications ranging from combinatorial treatment to epidemic response.

Publisher

Cold Spring Harbor Laboratory

Reference129 articles.

1. Using Emulation to Engineer and Understand Simulations of Biological Systems

2. Generating synthetic multidimensional molecular time series data for machine learning: considerations

3. The success and failure of BCG — implications for a novel tuberculosis vaccine

4. 5. Baier, L., Jöhren, F., Seebacher, S.: Challenges in the deplotment and operation of machine learning in practice. In: Proceedings of the 27th European Conference on Information Systems (ECIS). Stockholm & Uppsala, Sweden (2019)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3