Development and validation of artificial intelligence-based algorithms for predicting the segments debulked by rotational atherectomy using intravascular ultrasound

Author:

Hashimoto Kenta,Fujii Kenichi,Ueda DaijuORCID,Sumiyoshi Akinori,Hasegawa Katsuyuki,Fukuhara Rei,Otagaki Munemitsu,Okamura Atsunori,Yamamoto Wataru,Kawano Naoki,Yamamoto Akira,Miki Yukio,Shiojima Iichiro

Abstract

AbstractBackgroundAlthough rotation atherectomy (RA) is a useful technique for severely calcified lesions, patients undergoing RA show a greater incidence of catastrophic complications, such as coronary perforation. Therefore, prior to the RA procedure, it is important to predict which regions of the coronary plaque will be debulked by RA.ObjectivesWe develop and evaluate an artificial intelligence–based algorithm that uses pre-RA intravascular ultrasound (IVUS) images to automatically predict regions debulked by RAMethodsA total of 2106 IVUS cross-sections from 60 patients with de novo severely calcified coronary lesions who underwent IVUS-guided RA were consecutively collected. The two identical IVUS images of pre-and post-RA were merged, and the orientations of the debulked segments identified in the merged images are marked on the outer circle of each IVUS image. The artificial intelligence model was developed based on ResNet (deep residual learning for image recognition). The architecture connected 36 fully connected layers, each corresponding to one of the 36 orientations segmented every 10°, to a single feature extractor.ResultsIn each cross-sectional analysis, our artificial intelligence model achieved an average sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 81%, 72%, 46%, 90%, and 75%, respectively.ConclusionsThe artificial intelligence–based algorithm can use information from pre-RA IVUS images to accurately predict regions debulked by RA. The proposed method will assist interventional cardiologists in determining the treatment strategies for severely calcified coronary lesions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3