Author:
Stevens Harlan P.,Winegar Carly V.,Oakley Arwen F.,Piccolo Stephen R.
Abstract
AbstractTo help maximize the impact of scientific journal articles, authors must ensure that article figures are accessible to people with color-vision deficiencies. Up to 8% of males and 0.5% of females experience a color-vision deficiency. For deuteranopia, the most common color-vision deficiency, we evaluated images published in biology-oriented research articles between 2012 and 2022. Out of 66,253 images, 56,816 (85.6%) included at least one color contrast that could be problematic for people with moderate-to-severe deuteranopia (“deuteranopes”). However, after informal evaluations, we concluded that spatial distances and within-image labels frequently mitigated potential problems. We systematically reviewed 4,964 images, comparing each against a simulated version that approximates how it appears to deuteranopes. We identified 636 (12.8%) images that would be difficult for deuteranopes to interpret. Although still prevalent, the frequency of this problem has decreased over time. Articles from cell-oriented biology subdisciplines were most likely to be problematic. We used machine-learning algorithms to automate the identification of problematic images. For a hold-out test set of 879 additional images, a convolutional neural network classified images with an area under the receiver operating characteristic curve of 0.89. To enable others to apply this model, we created a Web application where users can upload images, view deuteranopia-simulated versions, and obtain predictions about whether the images are problematic. Such efforts are critical to ensuring the biology literature is interpretable to diverse audiences.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献