Altered Glia-Neuron Communication in Alzheimer’s Disease Affects WNT, p53, and NFkB Signaling Determined by snRNA-seq

Author:

Soelter Tabea M.ORCID,Howton Timothy C.ORCID,Clark Amanda D.ORCID,Oza Vishal H.ORCID,Lasseigne Brittany N.ORCID

Abstract

AbstractBackgroundAlzheimer’s disease is the most common cause of dementia and is characterized by amyloid-β plaques, tau neurofibrillary tangles, and neuronal loss. Although neuronal loss is a primary hallmark of Alzheimer’s disease, it is known that non-neuronal cell populations are ultimately responsible for maintaining brain homeostasis and neuronal health through neuron-glia and glial cell crosstalk. Many signaling pathways have been proposed to be dysregulated in Alzheimer’s disease, including WNT, TGFβ, p53, mTOR, NFkB, and Pi3k/Akt signaling. Here, we predict altered cell-cell communication between glia and neurons.MethodsUsing public snRNA-sequencing data generated from postmortem human prefrontal cortex, we predicted altered cell-cell communication between glia (astrocytes, microglia, oligodendrocytes, and oligodendrocyte progenitor cells) and neurons (excitatory and inhibitory). We confirmed interactions in an independent orthogonal dataset. We determined cell-type-specificity using Jaccard Similarity Index and investigated the downstream effects of altered interactions in inhibitory neurons through gene expression and transcription factor activity analyses of signaling mediators. Finally, we determined changes in pathway activity in inhibitory neurons.ResultsCell-cell communication between glia and neurons is altered in Alzheimer’s disease in a cell-type-specific manner. As expected, ligands are more cell-type-specific than receptors and targets. We validated 51 ligand- receptor pairs in an independent dataset that included two known Alzheimer’s disease risk genes:APPandAPOE. 17 (14 upregulated and 3 downregulated in Alzheimer’s disease) of the 51 interactions also had the same downstream target gene. Most of the signaling mediators of these interactions were not differentially expressed, however, the mediators that are also transcription factors had differential activity between AD and control. Namely,MYCandTP53, which are associated with WNT and p53 signaling, respectively, had repressor activity in Alzheimer’s disease, along with decreased WNT and p53 activity in inhibitory neurons. Additionally, inhibitory neurons had both increased NFkB signaling pathway activity and activator activity ofNFIL3, an NFkB signaling-associated transcription factor.ConclusionsCell-cell communication between glia and neurons in Alzheimer’s disease is altered in a cell-type-specific manner involving Alzheimer’s disease risk genes. Signaling mediators had altered transcription factor activity suggesting altered glia-neuron interactions may dysregulate signaling pathways including WNT, p53, and NFkB in inhibitory neurons.

Publisher

Cold Spring Harbor Laboratory

Reference81 articles.

1. Emmady PD , Schoo C , Tadi P (2022) Major Neurocognitive Disorder (Dementia). StatPearls Publishing

2. What causes Alzheimer’s disease? In: National Institute on Aging. https://www.nia.nih.gov/health/what-causes-alzheimers-disease. Accessed 30 Aug 2023

3. Crosstalk Between Astrocytes and Microglia: An Overview

4. IL-1β induces rod degeneration through the disruption of retinal glutamate homeostasis

5. Neuron–glia crosstalk in health and disease: fractalkine and CX 3 CR1 take centre stage

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3